1 CSB352: Data Mining

Instructor: [Dr. Chandra Prakash]

- For more information visit the class website.

2 LAB Assignment 7: Association Mining

Assigning Date: 15-Feb-2021

Due Date: 21-Feb-2021

Student Name:

Roll No:

3 Assignment Instructions

You must save your as Assignment_NO_Yourname

Agenda for the Assignment 7
Different statistical algorithms have been developed to implement association rule mining
1. Apriori Algorithm
2. Frequent Pattern Growth

Your source file will most likely end in .pynb if you are using a Jupyter notebook; however, it might also end in .py if you are using a Python script.

You have to add your name; roll no; DATE And Time in the Google Colab Instructions section below and print it.

4 Google CoLab Instructions

The following code ensures that Google CoLab is running the correct version of TensorFlow.

```python
try:
    from google.colab import drive
    %tensorflow_version 2.x
    COLAB = True
```
Problem Statement:

Association rule mining is a technique to identify underlying relations between different items. Take an example of a Super Market where customers can buy variety of items. Usually, there is a pattern in what the customers buy. For instance, mothers with babies buy baby products such as milk and diapers.

Different statistical algorithms have been developed to implement association rule mining:

1. Apriori Algorithm
2. Frequent Pattern Growth

Support

Support refers to the default popularity of an item and can be calculated by finding number of transactions containing a particular item divided by total number of transactions. Suppose we want to find support for item B. This can be calculated as:

\[
\text{Support}(B) = \frac{\text{Transactions containing } (B)}{\text{Total Transactions}}
\]

Confidence

Confidence refers to the likelihood that an item B is also bought if item A is bought. It can be calculated by finding the number of transactions where A and B are bought together, divided by total number of transactions where A is bought. Mathematically, it can be represented as:

\[
\text{Confidence}(A \rightarrow B) = \frac{\text{Transactions containing both } (A \text{ and } B)}{\text{Transactions containing } A}
\]

Lift

Lift(A -> B) refers to the increase in the ratio of sale of B when A is sold. Lift(A -> B) can be calculated by dividing Confidence(A -> B) divided by Support(B). Mathematically it can be represented as:

\[
\text{Lift}(A \rightarrow B) = \frac{\text{Confidence } (A \rightarrow B)}{\text{Support } (B)}
\]
4.0.1 Task 0: Getting to Know Your Data

Read Dataset [L7_Groceries.csv] from the link from LAB 1

How many unique item set is there in the dataset.

Pre-Processing Part

4.1 TASK 1. Apriori Algorithm

You need to Create your own function for Apriori Algorithm.

eg: my_Apriori(Dataset,Confidence,Support)

Step-1: Determine the support of itemsets in the transactional database.

Step-2: Take all supports in the transaction with higher support value than the minimum or selected support value.

Step-3: Find all the rules of these subsets that have higher confidence value than the threshold or minimum confidence.

Step-4: Sort the rules as the decreasing order of lift.

4.2 TASK 2. Frequent Pattern Growth Algorithm

You need to Create your own function for FP Growth Algorithm.

eg: my_FPG(Dataset,Confidence,Support)

Step-1: Determine the Frequent Pattern set

Step-2: Build the Order-Item Set.
Step-3: Tree Construction.

Step-4: Conditional Pattern Base.

Step-5: Conditional Frequent Pattern Tree

Step-6: Frequent Pattern Generated

Step-7: Find all the rules of these subsets that have higher confidence value than the threshold or minimum confidence.

Step-8: Sort the rules as the decreasing order of lift.

\[
\text{*********** WRITE Your FUNCTION FOR Frequent Pattern Growth Algorithm HERE ***********}
\]

\[
\text{*********** WRITE Your CODE HERE ***********}
\]

4.3 TASK 3: Compare the results of your functions for both algorithm with the inbuild/pre-build packages respectively.

5 Your Learning:

\[
\text{Write here}
\]

6 Your Observation about the dataset

\[
\text{Write here}
\]